In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts
نویسندگان
چکیده
Recently, induced pluripotent stem cells (iPSCs) have been generated in vivo from reprogrammable mice. These in vivo iPSCs display features of totipotency, i.e., they differentiate into the trophoblast lineage, as well as all 3 germ layers. Here, we developed a new reprogrammable mouse model carrying an Oct4-GFP reporter gene to facilitate the detection of reprogrammed pluripotent stem cells. Without doxycycline administration, some of the reprogrammable mice developed aggressively growing teratomas that contained Oct4-GFP(+) cells. These teratoma-derived in vivo PSCs were morphologically indistinguishable from ESCs, expressed pluripotency markers, and could differentiate into tissues of all 3 germ layers. However, these in vivo reprogrammed PSCs were more similar to in vitro iPSCs than ESCs and did not contribute to the trophectoderm of the blastocysts after aggregation with 8-cell embryos. Therefore, the ability to differentiate into the trophoblast lineage might not be a unique characteristic of in vivo iPSCs.
منابع مشابه
I-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کاملGeneration of in vivo neural stem cells using partially reprogrammed cells defective in in vitro differentiation potential
Pluripotent stem cells can be easily differentiated in vitro into a certain lineage through embryoid body formation. Recently, however, we reported partially reprogrammed cells showing some pluripotent characteristics, which failed to differentiate in vitro. Here, we attempted to generate neural stem cells (NSCs) from partially reprogrammed cells using an in vivo differentiation system involvin...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملInduced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy
Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms. Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...
متن کاملEstablishment and the importance of chicken pluripotent stem cells and their role in vaccine production: review article
Chick embryos are a great historical research model in basic and applied sciences. Along with other animal models, avian and specifically chicken embryo has been attended, as well. Avian fertilized eggs as a natural bioreactor are an efficient tool for producing recombinant proteins and vaccines manufacturing. Due to the limitations of birds' eggs for viral replication, avian stem cells culture...
متن کامل